索尼專利顯示,未來PSVR或可以通過多個MEMS(微電子機械系統)投影器來實現追蹤功能。這個專利對PSVR的追蹤性能無疑是一個提升,但索尼目前暫時沒有披露相關的計劃。本文是MEMS在眼動追蹤方面的相關知識,希望讓幫助用戶對MEMS在VR領域的應用有所了解。
眼動追蹤(Eye Tracking),是指通過測量眼睛的注視點的位置或者眼球相對頭部的運動而實現對眼球運動的追蹤。眼動儀是一種能夠跟蹤測量眼球位置及眼球運動信息的一種設備,在視覺系統、心理學、認知語言學的研究中有廣泛的應用。
一種比較常用的無創方式為視頻/圖像捕捉。攝像頭拍攝得到眼部圖片,具有一些可以提取的特征,經過某些圖像處理的算法提取出這些特征參數,從而確定眼球位置,用于判定人眼注視的方向和目標,計算結果由處理器CPU反應于你所使用的VR/AR設備上。根據7invensun的介紹,眼圖錄像法和角膜反射法都屬于該類方法。
以下為來自7invensun對此的介紹
眼圖錄像法主要是通過辨認眼球的特征如瞳孔外形、異色邊緣(虹膜、虹膜邊界)、近距指向光源的角膜反射來實現眼動跟蹤。根據云視頻的宣傳,其所提到的能夠讀懂人“眼神意識”的視頻技術,就是基于此項技術。然而虹膜識別+瞳孔運動識別雖然可以捕捉人眼的動作但是卻無法檢測到人眼的注視點,這才是最硬的傷!
首先虹膜識別和瞳孔識別都是基于一個平面的,要測量注視點就必須保證頭部是固定的,讓眼睛同頭和注視點的相對位置一致才可以。人眼作為人體最精細的器官之一,注視點轉移僅需要一個微小的動作,而人類僅僅因為呼吸而造成的頭部動作就足以讓測量誤差造成定位偏移。然后我們再退一萬步講,即使的頭部是固定的,對于虹膜的識別也沒那么容易,歐洲人的人眼特征較為明顯,識別相對容易,但也不是一個家用普通攝像頭就可以判斷眼球特征的,而亞洲人瞳孔多為深褐色,人眼特征較弱,普通攝像頭幾乎無法捕捉。因此從云視鏈的眼球追蹤技術的出發點來說,通過眼神就能推送出你想要的信息是不可能的了!
角膜反射法是目前眼球追蹤領域廣泛認可并應用的方法,主要通過攝像頭捕捉人眼特征,通過算法建立人眼二維或者三維注視點估計模型,通過算法判斷人眼動作和注視點。眼球的特殊構造會形成一到多個浦肯野像,基于這種方法的眼球追蹤一般定位第一浦肯野像,通過定標步驟,可以測量出處在垂直平面現實定標點表面上人眼的注視點。
有創的手段包括在眼睛中埋置眼動測定線圈或者使用微電極描記眼動電圖。眼電圖(electrooculography)檢測方式通過電極測量當眼球移動時的電位變化,其原理是眼球可以被考慮為偶極子。其優點是成本低,但普及型差。
MEMS同樣可以實現眼球追蹤功能,下面介紹的一項MEMS eye tracking技術來自加拿大滑鐵盧大學的N. Sarkar等人。
眼睛與眼角膜具有不同的直徑,這是該設計的原理基礎。該方案通過采用下圖所示的簡單設計從而實現在尺寸、價格、功率、帶寬、準確性的改進。該設計使用一束低輻射(1-10μW/cm2),紅外(850nm)、發散(~ 50mrad)的光束。光束從激光源發出后射向掃描儀scanner,掃描儀scanner具有一個平面,功能類似于鏡子,將入射光束反射。再由掃描儀scanner操控該光束射向眼角膜,然后從角膜表面反射(掠射角從60度到90度)到一個光電二極管。光電二極管的作用為接受光信號,產生電信號。輸出電信號隨輸入光強增大而增大。隨著眼睛的轉動,掃描儀scanner控制光束追蹤眼角膜上能夠使光電二極管接受到最大信號的點。
值得注意的是,其光電二極管的表面可作為一個空間濾波器,使其不需要大面積平坦的微鏡。相應地,該設計使用了一個300微米大小的掃描儀(Fresnel zone plate scanner)。其支撐anchor可以實現掃描儀scanner兩個自由度(藍色支撐以及紅色支撐均可旋轉)的偏轉,可以完成光束的較大范圍操縱。
下圖為另一種同樣具有兩個自由度的掃描儀scanner,其工作原理與上圖類似,通過支撐anchor的旋轉對掃描儀進行旋轉,從而操縱光束的角度。其中間載荷為垂直排列的兩個cylindrical lens patterns用以投射十字準線(crosshair)。
(進行色彩描繪后的掃描儀scanner的掃描電鏡圖)
(審核編輯: 林靜)
分享